
CS 115 Libraries, F to C

Taken from notes by Dr. Neil Moore

The math library
We’ve seen how to do everything a five-function calculator can do.
What about more advanced math?
• That’s available in Python too.
• But it’s not built-in like + and float are.
• Instead it’s in a library.

– A collection of pre-written code intended to be re-used.
• Functions
• Constants
• Types (“classes”)

– The math library comes with Python.
– graphics (chapter 3) is a third-party library.

• The Python math library has:
– Functions for trigonometry, logarithms, and more.
– Constants like π and e.

Using libraries in Python
• To use a library, you must first import it.

import math
– Put this at the very top of the program
– After header comments, before “def main():”

• Then your program can use the things in the library
– Their names are library.name
– So math.log (function) and math.pi (constant)
– You call functions with parenthesized arguments

• Just like input and print
– Each function has its own rules about what its arguments

are, what they mean, how many there are, etc.

Using libraries in Python

• If the function returns a value, you use it as
part of an expression
height = math.log(size, 2)

• If it does not return a value, use it as an entire
statement by itself:
random.seed()

• Only import the libraries you need!
– for documentation, for efficiency, for style

A variation on import

• You can instead import particular functions or
constants specifically by writing import this
way:
from math import sin, cos, tan, pi

– List the names that you are importing, separated
by commas

– Then you can use them without the “math.”
y = sin(angle) * radius

– Saves typing if you use a function many times

One last variation on import
• One last way to write import:

from math import *
– It imports everything in the library
– And you don’t have to use “math.”

num = e ** pi
– Sounds great, right? There can be a catch…
– What if next version of Python adds a new function

which is the same name as one of your variables or
functions?

– Your code could break! And have to be rewritten!
– Professional programmers avoid “from lib import *,

because of this catch. In class we’ll use it occasionally

What’s in the math library
• Trigonometry: sin, cos, tan, cosh,…

– angle = math.atan(a/b)
– circumference = math.pi * diameter

• Natural logarithm and other bases:
– doubling_time = math.log(2) / rate
– pH = -log(activity, 10)

• e and 𝑒𝑒𝑥𝑥
– balance = principal * math.e ** (rate *
time)

– balance = principle * math.exp(rate* time)
• More: sqrt, factorial, fib, …
• https://docs.python.org/3/library/math.h
tml

Common misunderstanding

• For some reason, once people know about the
math library, they feel that they MUST import it
for any kind of arithmetic, using +, -, *, /, //, **,
%, etc.

• This is NOT the case. All these operators were
available before you even knew about import,
they are still available as being builtin to Python.

• You need to import math ONLY when you are
using math library functions (sqrt, log, …) and
constants (pi, e)

Rounding
One more numeric function, builtin – so you do NOT have
to import math library to use it
• round has either one or two arguments

– If it has just ONE argument, it will round the argument to
the nearest integer

• round(5.2) → 5
• round (7.9) → 8

– If it has TWO arguments, the second one is the number of
decimal places desired. The first argument’s value will be
rounded to that number of decimals

• round (math.pi, 2) → 3.14
• round (2.71818, 0) → 3.0
• round (12, -1) → 10

Rounding

One more numeric function, builtin – so you do
NOT have to import math library to use it
• round has either one or two arguments

– If it has just ONE argument, it will round the
argument to the nearest integer

• round(5.2) → 5
• round (7.9) → 8
• round (5.235) → 5
• round (5.725) →6

Rounding
One more numeric function, builtin – so you do NOT have to import
math library to use it
• round has either one or two arguments

– If it has TWO arguments, the second one is the number of decimal
places desired. The first argument’s value will be rounded to that
number of decimals

• round (math.pi, 2) → 3.14
• round (2.71818, 0) → 3.0
• round (12, -1) → 10

• Note that a value ending in 5 does not always round up! It rounds
towards the even number – doc.python.org says that it is because
of the problems with representing floating point numbers

• So that round(5.3545, 3) → 5.354 (because 4 is even)
• And round(5.3555, 3) → 5.356 (because 6 is even)
• And round(4.5) → 4, and round(5.5) → 6

The round function
• round(number[, ndigits]) Return the floating point value number rounded

to ndigits digits after the decimal point. If ndigits is omitted, it returns the
nearest integer to its input.

• For the built-in types supporting round(), values are rounded to the
closest multiple of 10 to the power minus ndigits; if two multiples are
equally close, rounding is done toward the even choice (so, for example,
both round(0.5) and round(-0.5) are 0, and round(1.5) is 2). The return
value is an integer if called with one argument, otherwise of the same
type as number.

• The behavior of round() for floats can be surprising: for example,
round(2.675, 2) gives 2.67 instead of the expected 2.68. This is not a bug:
it’s a result of the fact that most decimal fractions can’t be represented
exactly as a float. See Floating Point Arithmetic: Issues and Limitations for
more information.

• From:
https://docs.python.org/3/library/functions.html?highlight=round%20function#ro
und

https://docs.python.org/3/library/functions.html?highlight=round%20function#round
https://docs.python.org/3/library/functions.html?highlight=round%20function#round
https://docs.python.org/3/tutorial/floatingpoint.html#tut-fp-issues

A complete program

Let’s go through the whole process of making a
(simple) program, from start to finish. The steps
are:
• Specification (the “assignment”, usually given to

you)
• Test plan
• Design (pseudocode, algorithm)
• Writing code
• Testing

Specification

We are given the specification:
Write a program that asks the user for a

temperature in Fahrenheit and converts it to
Celsius. The input does not have to be a whole
number of degrees. The program should print:

x degrees F is y C
Use the formula:

c = 5
9
(f – 32)

Round the answer to tenths of a degree.

Test plan
• What kind of inputs to test?
• Normal inputs: both integers and floats.
• Are there any boundary cases?

– Not really for the formula
• Some people would argue for absolute zero (-459.67 degrees

Fahrenheit or 273.15 degrees Celsius) because of physics
– Still we might test 0, should test negative numbers

• Other special cases?
– If the input had more than one digit after decimal, to

check for rounding correctly
• Any error cases?

– Non-numeric input

Test plan
Description Input Expected output
Normal, integer 32 32.0 F is 0.0 C
Normal, float 98.6 98.6 F is 37.0 C
Normal, zero 0.0 0.0 F is -17.8 C
Normal, negative -40 -40.0 F is -40.0 C
Normal, absolute zero -459.67 -459.67 F is -273.2 F
Special, to check
rounding

0.33333 0.3 F is -17.6 C

Error, non-numeric input Zero Terminates with error message about
wrong type

Design

For the design, we start with the purpose, inputs
(preconditions) and outputs (postconditions).
• Purpose: Convert a temperature from

Fahrenheit to Celsius.
• Preconditions: User enters a temperature in

Fahrenheit.
• Postconditions: Program prints the message “x

F is y C.”, rounded to one digit after the
decimal point.

Pseudocode
So how will we accomplish this?
1. Get the Fahrenheit temperature from the user
2. Convert to Celsius using the formula 𝐶𝐶 = 5

9
(F – 32).

3. Round the Fahrenheit temperature to one decimal.
4. Round the Celsius temperature to one decimal.
5. Output the answer message
Note: none of the above steps was Python code!
Pseudocode in your design should be written so that it
could be implemented in any programming language, not
just Python.

Pseudocode to comments
Make each step into a comment.
#Purpose: Convert a temperature from Fahrenheit to
Celsius.
#Preconditions: User enters a temperature in Fahrenheit.
#Postconditions: Program prints the message “x F is y C.”,
rounded to one digit after the decimal point.
1. Get the Fahrenheit temperature from the user
2. Convert to Celsius using the formula C = 5/9 (F – 32)
3. Round the Fahrenheit temperature to one decimal.
4. Round the Celsius temperature to one decimal.
5. Output the answer message.

Writing the code
Put the steps inside a def main(): and call the
main function at the end.
Purpose: Convert a temperature from Fahrenheit to
Celsius.
#Preconditions: User enters a temperature in Fahrenheit.
#Postconditions: Program prints the message “x F is y C.”,
rounded to one digit after the decimal point.
def main():
1. Get the Fahrenheit temperature from the user
2. Convert to Celsius using the form. C = 5/9 (F – 32)
3. Round the Fahrenheit temperature to one decimal.
4. Round the Celsius temperature to one decimal.
5. Output the answer message.

main()

Writing the code
And write code for each line of the design.

def main():
1. Get the Fahrenheit temperature from the user
fahr = float(input(“Enter a temp in Fahrenheit: “))
2. Convert to Celsius using the form. C = 5/9 (F – 32)
celsius = (5/9) * (fahr – 32)
3. Round the Fahrenheit temperature to one decimal.
fahr_round = round(fahr, 1)
4. Round the Celsius temperature to one decimal.
cels_round = round(celsius, 1)
5. Output the answer message.
print(fahr_round, “F is”, cels_round, “C.”)

main()

Testing

• Now run the program once for each test case.
• Give the input and verify that the output

matches the expected output.
• If not, there is a bug:

– Maybe in your program…
– Maybe in your test case!

• After you fix a bug, repeat all the tests.
– Regression testing!

	CS 115 Libraries, F to C
	The math library
	Using libraries in Python
	Using libraries in Python
	A variation on import
	One last variation on import
	What’s in the math library
	Common misunderstanding
	Rounding
	Rounding
	Rounding
	The round function
	A complete program
	Specification
	Test plan
	Test plan
	Design
	Pseudocode
	Pseudocode to comments
	Writing the code
	Writing the code
	Testing

